For any random variable Z with MGF: M_Z (t)=(1/3 exp(t)+ 2/3)^5 show the distribution of Z and obtain E(Z) and Var(Z) !
QUESTION:
For any random variable Z with MGF:
MZ(t)=(13exp(t)+23)5MZ(t)=(13exp(t)+23)5
show the distribution of Z and obtain E(Z)E(Z) and Var(Z)Var(Z) !
ANSWER:
Random variable Z has MGF: MZ(t)=(13exp(t)+23)5MZ(t)=(13exp(t)+23)5 , which is the MGF of the Binomial distribution with parameters n=5n=5 and p=1/3p=1/3 or Z∼Binomial(5,13)Z∼Binomial(5,13).
E(Z)E(Z):
With MGF so for E(Z)=M′Z(0)E(Z)=M′Z(0)
then
Var(Z)Var(Z):
Var(Z)=M″Z(0)−(M′Z(0))2Var(Z)=M′′Z(0)−(M′Z(0))2
for M″Z(t)M′′Z(t):
so,
You can find E(Z)E(Z) and Var(Z)Var(Z) using an easy method as we know for E(Z)=npE(Z)=np and Var(Z)=np(1−p)Var(Z)=np(1−p) in a Binomial distribution with parameters n and p, then:
E(Z)=np=5.13=53E(Z)=np=5.13=53
Var(Z)=np(1−p)=5.13(1−13)=5.13.23=109Var(Z)=np(1−p)=5.13(1−13)=5.13.23=109
Posting Komentar