Suppose X_1, ..., X_n is a random sample from a normal distribution with parameter μ and σ^2 . If S^2=Σ(X_i - Xbar)^2 /n , where Xbar is the sample mean, determine the distribution of nS^2 /σ^2 .

1 minute read



QUESTION: 

Suppose X1,...,XnX1,...,Xn is a random sample from a normal distribution with parameter μμ and σ2σ2. If S2=(XiˉX)2nS2=(Xi¯X)2n , where ˉX¯X is the sample  mean, determine the distribution of nS2σ2nS2σ2.

ANSWER:

X1,...,XnN(μ,σ2)X1,...,XnN(μ,σ2) ˉXN(μ,σ2n)¯XN(μ,σ2n) Zi=xiμσN(0,1),Wi=(Zi)2=(xiμσ)2χ2(1)Zi=xiμσN(0,1),Wi=(Zi)2=(xiμσ)2χ2(1) V=ni=1Wiχ2(n)V=ni=1Wiχ2(n) Y=ˉxμσ/nN(0,1),Y2=n(ˉxμ)2σ2χ2(1)Y=¯xμσ/nN(0,1),Y2=n(¯xμ)2σ2χ2(1) ni=1(xiμ)2=ni=1[(xiˉx)+(ˉxμ)]2=ni=1[(xiˉx)2+(ˉxμ)2+2(xiˉx)(ˉxμ)]=ni=1(xiˉx)2+ni=1(ˉxμ)2+2ni=1(xiˉx)(ˉxμ)

Where ni=1(xiˉx)=0 then

ni=1(xiμ)2=ni=1(xiˉx)2+n(ˉxμ)2

To obtain a random variable with a normal distribution and chi-square, the equation is multiplied by 1σ2

ni=1(xiμ)2σ2=ni=1(xiˉx)2σ2+n(ˉxμ)2σ2

V=ni=1Wiχ2(n)MV(t)=(12t)n2

Y2=n(ˉxμ)2σ2χ2(1)MY2(t)=(12t)12

Based on the definition of the MGF equation, then:

MV(t)=E(etV)=E(et(ni=1(xiμ)2σ2+Y2))=Mni=1(xiμσ)2(t).MY2(t)(12t)n2=Mni=1(xiμσ)2(t).(12t)12Mni=1(xiμσ)2(t)=(12t)n2(12t)12=(12t)n2+12=(12t)(n1)2

so   Mni=1(xiμσ)2(t)χ2(n1)

To get the distribution of nS2σ2 then it needs to be multiplied by nn :

ni=1(xiμσ)2.nn=nni=1(xiμσ)2n=nni=1(xiˉx)2σ2n=nni=1(xiˉx)2nσ2=nS2σ2

Based on these results, it can be concluded that nS2σ2has a chi-square distribution with degrees of freedom (n1) or  nS2σ2χ2(n1).